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Delisting Critenaandi Tangetss

Quantifiable delisting targets enable managers to:
More easily assess BUI status
Prioritize remedial actions
Reach consensus on delisting

Components of an ideal target:
Premised on local goals or objectives
Have measurable indicators that are also realistic
Can be modified over time using current data
Considers natural variability or uncertainty in ecosystem processes

Canada -Ontario Agreement Respecting the Great Lakes Basin
Ecosystem (2007):

Ar e del i stmeasgrabter 0 jachievabe o an d
fscientifically defensible 0 ?
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Current trends imadelistingecotéraia

Are del i stmea@gs wrratilegad a 0

BUI 13:Degradation  of Phytoplankton and Zooplankton Populations

A Secondary focus of RAPs
A Many AOCs lack detailed information at initial assessment

Are del i stacmegable 0i?t er i a

BUI 8:Eutrophication or Undesirable Algae

A Spatio-temporal variability rarely considered
A 100% attainment of target in space and time not realistic, yet this appears to be
the expectation

Ar e del i stdciengficatlyr idefensibleao %

BUI 13:Degradation  of Phytoplankton and Zooplankton Populations

A Use of proxies for unknown ecosystem components (i.e., TP,Chl a)
A Adequacy of reference sites and significance levels




A,
Current delistingzariténaa
Current delisting targets:
BUI 8: #AEutrophication or Undesirable .

A Phosphorus concentration < 30 >g Lt

BUI 13: AnDegradation of Phytoplankton

A Positive change in phytoplankton species composition with a
decrease in nuisance and eutrophic indicator species

A Zooplankton populations of 0.45 I 0.5mm mean Cladoceran size
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urrent delistingeariténaa

Revisiting delisting criteria

U Improved water clarity and less frequent algal blooms (probabilistic statements)
U Reliable, guantitative criteria for BUI 13
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Overall research questions:

1) What is the optimal model for describing the causal association
among exogenous loading, internal recycling, and the end-of-
summer ambient phosphorus concentrations?

2) Which are the underlying mechanisms that drive phytoplankton
patterns in the Bay of Quinte?

3) How strong is the signature of physical conditions and dietary
patterns on the composition of zooplankton assemblage®

4) What are the best representation of the water quality conditions
In the Bay of Quinte and achievable (realistic) targets to be
delisted from Areasof Concern?
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A Structural Equation Modeling (SEM)
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A Processbased (mechanistic) model

e Bay of Quinte Algal Watch sampling statio
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Data set:

A Used phytoplankton biomass, zooplankton, fish biomass, nutrients (i.e., TP, TKN,
NH ,, NO;-NO,, SRP, SiQ), physical parameters (i.e., temperature, conductivity)

A Limited to samples from four stations; upper (Belleville), middle (Napanee, Hay
Bay) and lower (Conway)

A Tributary information: Provincial Water Quality Monitoring Network (PWQMN)
A Historical meteorological record



Methods:

Data -oriented model

Machine Learning Structural Equation
Modeling (SEM)

No structure ( Black box)
ASelf-automated method by
optimizing a performance

criterion

AExtremely data dependent

Advantages:

AMany applications in
pattern/trend recognition and
forecasting

AUseful when human knowledge
is limited

Disadvantages:
AHighly data demanding!!
ADoes not provide causal linkage

Simple structure:

AA priori statistical method,
knowledge based structure of the
system

AOnly considers covariance matrix

Advantages:

AQuantifies both direct and
indirect relationships

Alncorporate measurement errors
and consider latent variables

Disadvantages:

ADifficult to accommodate non -
linear structures

Mathematical model

Process -based Model

Complex structure:

AA mathematical representation
of the interactions among
variables

ALess data dependent

Advantages:

AShed lights on the causal
relationships

AHelp understand ecological
processes and predict system
responses

Disadvantages:

Alncreased complexity increases
uncertainty




Machine Learning Applications to
Ecological Research in Great Lakes




Research Background

A Representation of ecological interactions is too intricate: im the:
real world (e.g., ecological unknowns and lack of knowledge).

A Ecological data are highly non-linear and non-stationary..
[ Diffenenitsounces of uncertainiy: Sampling: irreguidaityty
measuring errors, missing values, many zerowdlues cetc.

A Extreme ecological events((e:g., toxic-algal blooms)-are too
difficult to forecastt.



Big Data and Artificial Intelligence

Artificial
Intelligence

Machine
Learning

Artificial
Neural Networks

Bayesian Learning
Decision Trees

Evolutionary
Computation
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